Skip to main content
Advertisement
  • Neurology.org
  • Journals
    • Neurology
    • Clinical Practice
    • Education
    • Genetics
    • Neuroimmunology & Neuroinflammation
  • Online Sections
    • Neurology Video Journal Club
    • Diversity, Equity, & Inclusion (DEI)
    • Neurology: Clinical Practice Accelerator
    • Practice Buzz
    • Practice Current
    • Residents & Fellows
    • Without Borders
  • Collections
    • COVID-19
    • Disputes & Debates
    • Health Disparities
    • Infographics
    • Neurology Future Forecasting Series
    • Null Hypothesis
    • Patient Pages
    • Topics A-Z
    • Translations
    • UDDA Revision Series
  • Podcast
  • CME
  • About
    • About the Journals
    • Contact Us
    • Editorial Board
  • Authors
    • Submit Manuscript
    • Author Center

Advanced Search

Main menu

  • Neurology.org
  • Journals
    • Neurology
    • Clinical Practice
    • Education
    • Genetics
    • Neuroimmunology & Neuroinflammation
  • Online Sections
    • Neurology Video Journal Club
    • Diversity, Equity, & Inclusion (DEI)
    • Neurology: Clinical Practice Accelerator
    • Practice Buzz
    • Practice Current
    • Residents & Fellows
    • Without Borders
  • Collections
    • COVID-19
    • Disputes & Debates
    • Health Disparities
    • Infographics
    • Neurology Future Forecasting Series
    • Null Hypothesis
    • Patient Pages
    • Topics A-Z
    • Translations
    • UDDA Revision Series
  • Podcast
  • CME
  • About
    • About the Journals
    • Contact Us
    • Editorial Board
  • Authors
    • Submit Manuscript
    • Author Center
  • Home
  • Latest Articles
  • Current Issue
  • Past Issues
  • Neurology Video Journal Club
  • Residents & Fellows

User menu

  • Subscribe
  • My Alerts
  • Log in

Search

  • Advanced search
Neurology
Home
The most widely read and highly cited peer-reviewed neurology journal
  • Subscribe
  • My Alerts
  • Log in
Site Logo
  • Home
  • Latest Articles
  • Current Issue
  • Past Issues
  • Neurology Video Journal Club
  • Residents & Fellows

Share

November 05, 2019; 93 (19) Article

TDP-43 levels in the brain tissue of ALS cases with and without C9ORF72 or ATXN2 gene expansions

Yue Yang, View ORCID ProfileGlenda M. Halliday, Matthew C. Kiernan, Rachel H. Tan
First published October 16, 2019, DOI: https://doi.org/10.1212/WNL.0000000000008439
Yue Yang
From the University of Sydney (Y.Y., G.M.H., M.C.K., R.H.T.), Brain and Mind Centre and Central Clinical School, Faculty of Medicine and Health; School of Medical Sciences (G.M.H., R.H.T.), University of New South Wales; Neuroscience Research Australia (G.M.H., R.H.T.); and Department of Neurology (M.C.K.), Royal Prince Alfred Hospital, Sydney, Australia.
PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Glenda M. Halliday
From the University of Sydney (Y.Y., G.M.H., M.C.K., R.H.T.), Brain and Mind Centre and Central Clinical School, Faculty of Medicine and Health; School of Medical Sciences (G.M.H., R.H.T.), University of New South Wales; Neuroscience Research Australia (G.M.H., R.H.T.); and Department of Neurology (M.C.K.), Royal Prince Alfred Hospital, Sydney, Australia.
PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Glenda M. Halliday
Matthew C. Kiernan
From the University of Sydney (Y.Y., G.M.H., M.C.K., R.H.T.), Brain and Mind Centre and Central Clinical School, Faculty of Medicine and Health; School of Medical Sciences (G.M.H., R.H.T.), University of New South Wales; Neuroscience Research Australia (G.M.H., R.H.T.); and Department of Neurology (M.C.K.), Royal Prince Alfred Hospital, Sydney, Australia.
FRACP
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rachel H. Tan
From the University of Sydney (Y.Y., G.M.H., M.C.K., R.H.T.), Brain and Mind Centre and Central Clinical School, Faculty of Medicine and Health; School of Medical Sciences (G.M.H., R.H.T.), University of New South Wales; Neuroscience Research Australia (G.M.H., R.H.T.); and Department of Neurology (M.C.K.), Royal Prince Alfred Hospital, Sydney, Australia.
PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Full PDF
Short Form
Citation
TDP-43 levels in the brain tissue of ALS cases with and without C9ORF72 or ATXN2 gene expansions
Yue Yang, Glenda M. Halliday, Matthew C. Kiernan, Rachel H. Tan
Neurology Nov 2019, 93 (19) e1748-e1755; DOI: 10.1212/WNL.0000000000008439

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Permissions

Make Comment

See Comments

Downloads
239

Share

  • Article
  • Figures & Data
  • Info & Disclosures
Loading

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Abstract

Objective To assess the amount of phosphorylated and nonphosphorylated TAR DNA-binding protein 43 (TDP-43) in the motor brain regions of cases of amyotrophic lateral sclerosis (ALS) with and without repeat expansions in the ATXN2 or C9ORF72 genes.

Methods The 45-kDa phosphorylated form of TDP-43 and 43-kDa nonphosphorylated form of TDP-43 were quantified by immunoblot in postmortem brain tissue from the motor cortex, spinal cord, and cerebellar vermis of 23 cases with ALS with repeat expansions in the ATXN2 or C9ORF72 genes and sporadic disease and 10 controls.

Results Significantly greater levels of phosphorylated TDP-43 were identified in the motor cortex of cases with ALS with C9ORF72 expansions, and significantly greater amounts of phosphorylated TDP-43 were found in the spinal cord of cases with ALS with intermediate ATXN2 expansions. In contrast, however, similar levels of nonphosphorylated TDP-43 were found in all 3 regions between ALS groups.

Conclusion Despite its central role in the pathogenesis of ALS and the emergence of potential targets to modify its aggregation, TDP-43 levels have not been quantified in pathologically confirmed cases with ALS. The present results demonstrating significant differences in phosphorylated but not nonphosphorylated TDP-43 levels suggest that different posttranslational modifications are involved in the generation of greater pathologic TDP-43 levels identified here in our cohort of cases with genetic expansions. These findings are consistent with emerging studies implicating distinct pathomechanisms in the generation of pathologic TDP-43 in cases with ALS with C9ORF72 or ATXN2 expansions and are of relevance to therapeutic research aimed at reducing pathologic TDP-43 in all or a subset of patients with ALS.

Glossary

ALS=
amyotrophic lateral sclerosis;
DPR=
dipeptide repeat;
NHMRC=
National Health and Medical Research Council;
TDP-43=
TAR DNA-binding protein 43

Footnotes

  • Go to Neurology.org/N for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.

  • Editorial, page 823

  • Received February 5, 2019.
  • Accepted in final form June 17, 2019.
  • © 2019 American Academy of Neurology
View Full Text

AAN Members

We have changed the login procedure to improve access between AAN.com and the Neurology journals. If you are experiencing issues, please log out of AAN.com and clear history and cookies. (For instructions by browser, please click the instruction pages below). After clearing, choose preferred Journal and select login for AAN Members. You will be redirected to a login page where you can log in with your AAN ID number and password. When you are returned to the Journal, your name should appear at the top right of the page.

Google Safari Microsoft Edge Firefox

Click here to login

AAN Non-Member Subscribers

Click here to login

Purchase access

For assistance, please contact:
AAN Members (800) 879-1960 or (612) 928-6000 (International)
Non-AAN Member subscribers (800) 638-3030 or (301) 223-2300 option 3, select 1 (international)

Sign Up
Information on how to subscribe to Neurology and Neurology: Clinical Practice can be found here 

Purchase
Individual access to articles is available through the Add to Cart option on the article page.  Access for 1 day (from the computer you are currently using) is US$ 39.00.  Pay-per-view content is for the use of the payee only, and content may not be further distributed by print or electronic means.  The payee may view, download, and/or print the article for his/her personal, scholarly, research, and educational use.  Distributing copies (electronic or otherwise) of the article is not allowed.

Letters: Rapid online correspondence

No comments have been published for this article.
Comment

REQUIREMENTS

You must ensure that your Disclosures have been updated within the previous six months. Please go to our Submission Site to add or update your Disclosure information.

Your co-authors must send a completed Publishing Agreement Form to Neurology Staff (not necessary for the lead/corresponding author as the form below will suffice) before you upload your comment.

If you are responding to a comment that was written about an article you originally authored:
You (and co-authors) do not need to fill out forms or check disclosures as author forms are still valid
and apply to letter.

Submission specifications:

  • Submissions must be < 200 words with < 5 references. Reference 1 must be the article on which you are commenting.
  • Submissions should not have more than 5 authors. (Exception: original author replies can include all original authors of the article)
  • Submit only on articles published within 6 months of issue date.
  • Do not be redundant. Read any comments already posted on the article prior to submission.
  • Submitted comments are subject to editing and editor review prior to posting.

More guidelines and information on Disputes & Debates

Compose Comment

More information about text formats

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Author Information
NOTE: The first author must also be the corresponding author of the comment.
First or given name, e.g. 'Peter'.
Your last, or family, name, e.g. 'MacMoody'.
Your email address, e.g. higgs-boson@gmail.com
Your role and/or occupation, e.g. 'Orthopedic Surgeon'.
Your organization or institution (if applicable), e.g. 'Royal Free Hospital'.
Publishing Agreement
NOTE: All authors, besides the first/corresponding author, must complete a separate Publishing Agreement Form and provide via email to the editorial office before comments can be posted.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.

Vertical Tabs

You May Also be Interested in

Back to top
  • Article
    • Abstract
    • Glossary
    • Methods
    • Results
    • Discussion
    • Study funding
    • Disclosure
    • Acknowledgment
    • Appendix Authors
    • Footnotes
    • References
  • Figures & Data
  • Info & Disclosures
Advertisement

Association of Long-term Exposure to Air Pollution and Dementia Risk: The Role of Homocysteine, Methionine, and Cardiovascular Burden

Dr. Fabricio Ferreira de Oliveira and Dr. Alan Cronemberger Andrade

► Watch

Related Articles

  • Repeat expansions contribute to TDP-43 pathologic heterogeneity in ALS

Topics Discussed

  • Amyotrophic lateral sclerosis
  • Cerebellum
  • Motor cortex

Alert Me

  • Alert me when eletters are published

Recommended articles

  • Editorial
    Repeat expansions contribute to TDP-43 pathologic heterogeneity in ALS
    Massimo Filippi, Corey T. McMillan et al.
    Neurology, October 16, 2019
  • Article
    Screening for novel hexanucleotide repeat expansions at ALS- and FTD-associated loci
    Fang He, Julie M. Jones, Claudia Figueroa-Romero et al.
    Neurology Genetics, May 11, 2016
  • Article
    Multiparametric MRI study of ALS stratified for the C9orf72 genotype
    Peter Bede, Arun L.W. Bokde, Susan Byrne et al.
    Neurology, June 14, 2013
  • Article
    Somatic expansion of the C9orf72 hexanucleotide repeat does not occur in ALS spinal cord tissues
    Jay P. Ross, Claire S. Leblond, Hélène Catoire et al.
    Neurology: Genetics, March 20, 2019
Neurology: 101 (20)

Articles

  • Ahead of Print
  • Current Issue
  • Past Issues
  • Popular Articles
  • Translations

About

  • About the Journals
  • Ethics Policies
  • Editors & Editorial Board
  • Contact Us
  • Advertise

Submit

  • Author Center
  • Submit a Manuscript
  • Information for Reviewers
  • AAN Guidelines
  • Permissions

Subscribers

  • Subscribe
  • Activate a Subscription
  • Sign up for eAlerts
  • RSS Feed
Site Logo
  • Visit neurology Template on Facebook
  • Follow neurology Template on Twitter
  • Visit Neurology on YouTube
  • Neurology
  • Neurology: Clinical Practice
  • Neurology: Education
  • Neurology: Genetics
  • Neurology: Neuroimmunology & Neuroinflammation
  • AAN.com
  • Continuum
  • Brain & Life
  • Neurology Today

Wolters Kluwer Logo

Neurology | Print ISSN:0028-3878
Online ISSN:1526-632X

© 2023 American Academy of Neurology

  • Privacy Policy
  • Feedback
  • Advertise